
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

Journal of Pure and Applied Algebra 122 (1997) 41-53 

Commutative algebra for cohomology rings 
spaces of compact Lie groups 

D.J. Benson a, J.P.C. Greenlees b,* 

of classifying 

aDepartment of Mathematics, University of Georgia, Athens. GA 30602, USA 

‘School of Mathematics and Statistics, Hicks Building, Shefield, UK, S3 7RH 

Communicated by E.M. Friedlander; received 31 July 1995 

Abstract 

We apply the techniques of highly structured ring and module spectra to prove a duality 
theorem for the cohomology ring of the classifying space of a compact Lie group. This general- 
izes results of Benson-Carlson [2, 31 and Greenlees [lo] in the case of finite groups. In particular, 
we prove a functional equation for the Poincare series in the oriented Cohen-Macaulay case. 
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1. Introduction 

Some time ago,’ based on joint work with Carlson [3] on finite group cohomology, 

the first author made the following conjecture. Let G be a compact Lie group, BG 

its classifying space, and k any field of coefficients. Then, provided that H*(BG; k) is 

Cohen-Macaulay, the Poincare series 

pa(r) = C t’ dimk H’(BG; k), 
i>O 

regarded as a rational function of t, satisfies the functional equation 

pc;(llt) = t%UJ%(t). 

Here, d = dim(G) denotes the dimension of G as a manifold, and Y = Q(G) denotes 

the maximal rank of a finite elementary abelian p-subgroup of G if char(k) = p is 

* Corresponding author. E-mail: j.greenlees@sheffield.ac.uk. 
’ The Summer of 1991, to be precise. 
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a prime, and the Lie rank ro(G) if char(k) = 0; Quillen has shown this is the Krull 

dimension of H*(BG; k). In particular, this conjecture implies that if H*(BG; k) is 

Cohen-Macaulay then it is Gorenstein. 

Even if H*(BG; k) is not Cohen-Macaulay, the conjecture goes on to say that for 

any choice of a homogeneous set of parameters ii,. . .,cr E H*(BG; k) with ii in 

codegree ’ ni, there is a spectral sequence of the form described in [3], converging 

to the cohomology of a finite Poincare duality complex of formal dimension dim(G) 

+ Ci=i(ni - 1). The results of [3] verify the conjectures when G is finite, but the 

methods do not appear to extend. 

In the meanwhile, also for finite groups G, the second author [lo] applied the meth- 

ods of [3] to construct another spectral sequence using Grothendieck’s local cohomol- 

ogy of H*(BG; k) with respect to the ideal J of elements of positive codegree, and 

converging to H*(BG; k). This gives the same information in the Cohen-Macaulay 

case, and is closely related to what happens in the spectral sequence of [3] in the limit 

as the generators are replaced by higher and higher powers. 

In fact, it turns out that the conjecture is false, but for subtle reasons to do with 

orientation. The simplest counterexample is the orthogonal group O(2) over a field k 
with char(k) # 2. The problem comes from the fact that the adjoint representation 

Ad(G) of G is not orientable. In this paper k will denote an arbitrary commutative 

Noetherian ring unless otherwise stated, and we describe a spectral sequence which 

gives a sort of global duality for the ring H*(BG; k). In case Ad(G) is orientable, the 

statement is as follows. 

Theorem 1.1. If G is a compact Lie group of dimension d with the property that 
the adjoint representation Ad(G) is orientable over the ring k, there is a spectral 
sequence of the form 

H;.*(H*(BG; k)) ==+ C-dH*(BG; k). 

Here, Cpd denotes a shift of d in degree, and H,*,* denotes local cohomology 

with respect to J (we recall the definition in Section 2, and the grading conventions 

are made explicit in Corollary 5.2). More generally, without the orientability assump- 

tion, the spectral sequence converges to a twisted form of the homology of BG (see 
Theorem 5.1). Namely, the adjoint representation may be regarded as a group homo- 

morphism G --) O(d) to the orthogonal group of the tangent space at the identity. 

Compose this homomorphism with the determinant homomorphism O(n) + {f 1}, to 

get a homomorphism J. : G 4 {fl} c kX wh ose kernel is a subgroup H of index one 

or two in G. The subgroup H contains the connected component of the identity in G, 

so 1 induces a homomorphism from xl(BG) 2 Q(G) to {f 1) C kX , and hence a local 

system E on BG. The spectral sequence then takes the form 

HJ*‘*(H*(BG; k)) ti TdH*(BG; E). 

* Because we wish to view cohomology as homology with the degrees negated (and vice versa), we use the 

word degree to denote homological degree, and codegree to denote cohomological degree. 
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Notice that if k is a field and H # G then k does not have characteristic two, and in 

this case, H*(BG; k) and H*(BG;E) are the +1 and the -1 eigenspaces of the action 

of G/H on H*(BH; k) respectively. 

We remark that there is still no known analogue for compact Lie groups of the res- 

olutions constructed in [3] for finite groups. However, the above theorem gives enough 

information to deduce what we want about Poincare series. Indeed since local coho- 

mology detects depth, if H*(BG; k) is Cohen-Macaulay and Ad(G) is orientable over 

k the theorem states that H’,*(H*(BG; k)) is the (d+r)th desuspension of H*(BG; k). 
If k is a field this is the canonical module and so H*(BG; k) is also Gorenstein. It 

also has the following implication about Poincare series. 

Theorem 1.2. Suppose that Ad(G) is orientable over a field k, and that H*(BG; k) is 
Cohen-Macaulay. Then the PoincarP series pc(t) = Ci,O dimk H’(BG; k), regarded 
as a rational function oft, satisjies the functional equation 

pG( l/t) = td’m(G)(-t)‘p(G)pC(t). 

We remark that the assumption of orientability of Ad(G) is satisfied whenever G is 

finite, or the component group of G is of odd order, or k has characteristic two. It is 

not satisfied for the orthogonal group O(2) unless char(k) = 2. 

We use the method outlined in [9], which can be implemented in the category of 

highly structured module spectra over a highly structured ring spectrum introduced 

by [6]. It is proved in the companion paper by Elmendorf and May [S] that Bore1 

cohomology is represented by a highly structured ring spectrum; using this, it is rather 

routine to complete the proof using Venkov’s theorem [ 16, 171 that the cohomology 

of the classifying space is a Noetherian ring. 

The rest of the paper is arranged as follows. We begin in Section 2 by recalling the 

algebra necessary to make sense of the statement of the main theorem. In Section 3 we 

illustrate the use of the theorem by giving a number of calculations. We then begin to 

introduce the method of proof by giving a quick summary of relevant facts about the 

Elmendort-Kriz-Mandell-May category of highly structured modules. This prepares us 

for the proof itself; we recall the strategy from [9], and verify the relevant algebraic 

hypotheses in Section 5. 

2. Local cohomology 

In this section we summarize the basic definitions and properties of Grothendieck’s 

local cohomology. The basic reference is [12], but an expository summary in a form 

suitable for our use is given in [ 111. 

Suppose given a ring R, which is either ungraded and commutative, or graded and 

graded commutative, and which need not be Noetherian, and suppose given a finitely 

generated ideal J = (/?I, 82,. . . , /&). If R is graded the /?i are required to be homo- 

geneous. 
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For any element we may consider the stable Koszul cochain complex 

fW) = CR --+ RWBI) 

concentrated in codegrees 0 and 1. Notice that we have a fibre sequence 

K’(B)-R - WPI 

of cochain complexes. We may now form the tensor product 

K’(Bl, . . . , Bn > = K'(B1 > CT3 . . . c3 K’(Bn 1. 

It is clear that this complex is unchanged if we replace some j? by a power, and it is not 

hard to check that if we invert any element of the ideal J the complex becomes exact. 

Therefore, up to quasi-isomorphism K’(Pi, . . . , /3,,) depends only on the radical of the 

ideal J, and we henceforth write K*(J) for it. Notice that there is an augmentation 

K*(J) - R obtained by tensoring the augmentations of the factors. 

Following Grothendieck we define the local cohomology groups of an R-module A4 

by 

H,*(M) := H*(K’(J) @n/l). 

It is easy to see that H:(M) is the submodule T’(M) := {m E A4 1 JNm = 0 for some 

N} of J-power torsion elements of M. If R is Noetherian it is not hard to prove directly 

that HJ*(R; .) is effaceable and hence that local cohomology calculates right derived 

functors of r~(.). It is clear that the local cohomology groups vanish above codegree 

n, but in the Noetherian case Grothendieck’s vanishing theorem shows the powerful 

fact that they are zero above the Krull dimension of R. The other fact we shall use 

is that if /I E J then HF(R;M)[1//3] = 0; this is a restatement of the exactness of 

KYJWPI- 
When R and M are graded the local cohomology group H:(M) is itself graded, and 

we write H:‘(M) for the codegree t part in the standard way. 

3. Sample calculations 

For the examples we restrict our attention to the case when k is a field. The first case 

to look at is where G is connected and the cohomology H*(G; k) of G as a manifold is 

an exterior algebra A([ i, . . . , [,.) with deg(&) = ni - 1, SO that dim(G) = C:=, (ni - 1). 

In this case, by Theo&me 19.1 of Bore1 [S], the cohomology H*(BG; k) is a polynomial 

ring on generators & of codegrees ni. In particular, it is Cohen-Macaulay, and it is 

easy to check that the functional equation (Theorem 1.2) holds for 

pc(t) = fi --L i=, 1 - P’ 
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For a more non-trivial Cohen-Macaulay example, we can look at the spinor groups 

G = Spin(n) in characteristic two. Quillen [15] has calculated the cohomology in this 

case, and the answer is 

H*(BSpin(n); E2) = F2Lw2,. . . ,wJI(v2,~3, n,. . . ,e-r-l+~) @ ~2[12~7-~ I. 

Here, [F2 [wz, . . . , w,] is a polynomial ring in the n - 1 Stiefel-Whitney classes for 

BSO(n), Y = r2(G) is roughly half of n but varies in a way that depends on the 

residue class of n modulo eight, vu-l+, (1 I j I II - r) are elements of codegrees 

2j-’ + 1 which form a regular sequence in [F2[w2 , . . . , w,], and [2,V-‘. is an independent 

generator in codegree 2”~‘. Thus the Poincare series is 

Pc(t)= (1 -t2)(1 -t3)(1 -t’)...(l -t2”-“-‘+‘) 
(1 -$)...(l -t”)(l -$‘I-“) 

and 

dim(G)=n(n-1)/2=1+2+...+(n-1)+(2”-’-1) 

_l-2_4-...-2+-i, 

so that an easy check shows that the functional equation (Theorem 1.2) is again satisfied 

in this case. 

In the Cohen-Macaulay case, H$*(H*(BG; k)) 1s zero except when s = r (= rp(G)), 

and then 

H;*(H*(BG; k)) g C-‘d+“H*(G; k). 

Recalling our convention that homology is just negatively graded cohomology (and the 

suspension is cohomological), this means that the E2 page of the spectral sequence sits 

in the fourth quadrant, and consists of H*(BG; k) in the rth column, starting in degree 

-d - r and working downwards. 

Theorem 1.2 is now readily verified using the fact that in the Cohen-Macaulay case 

H*(BG; k) is finitely generated and free over the polynomial subring on generators 

ii , . . . ,& which generate an ideal with radical J. Thus the Poincare series has the 

form ho = q(t)r(t) where q(t) = nL=, l/(1 - t”‘) and r(t) is a polynomial. The 

Poincare series of H’,*(H*(BG; k)) is readily checked to be tPr(t)q(l/t) where n = 

n1 +n2+... + n,, and the Poincare series of C-@+‘)H*(BG; k) is t-cdf’b( l/t)q( l/t). 

Hence r(l/t) = td+r-n r(t), and as remarked above q( l/t) = (-1 )‘t”q(t). 

For a family of examples in which the orientation problem interferes with the Rmc- 

tional equation, look at the orthogonal groups G = 0(2n), with k a field which 

does not have characteristic two. Let H = S0(2n), the connected normal subgroup 

of index two in G. In this case, H*(BH; k) is a polynomial algebra on n genera- 

tors k[pi,pz,... , p,,_l, e], with pi in codegree 4i and e in codegree 2n (pi are the 

Pontrjagin classes and e is the Euler class, which satisfies e2 = p,). The group G/H 2 

h/2 acts on this ring by fixing the Pontrjagin classes and negating the Euler class. 
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Thus 

H*(BG; k) Z H*(BH;k)G’H = k[pi, . . . , pn]. 

Although this is a Cohen-Macaulay ring, and even a Gorenstein ring, the dualizing 

class is in the wrong degree. The functional equation satisfied is 

po( 1/t) = t4n2+*n-‘(-t)nPo(t), 

whereas dim(G) = 4n2 - 1. The reason for this is that elements of G which are not in 

H act on the adjoint representation Ad(H) = Ad(G) with a reverse in orientation. So 

instead of computing H*(BG;k), with G/H = nl(BG) acting trivially on k, we should 

make it act as the sign representation E. Then 

H*(BG; E) = k[p,, . . . , pn] . e, 

the free module of rank one over H*(BG; k) generated by the Euler class. The shift 

in degree of 2n effected by this takes care of the dualizing degree. 

In general, the stable Koszul complex may be regarded as an Ei page for the spectral 

sequence. It consists of H*(BG; k) in the zeroth column (in non-negative degrees), the 

direct sum of the rings obtained by inverting each ii in turn in the first column, and 

so on, until the rth and last column consists of H*(BG; k) with all the ii inverted. 

For an example which is not Cohen-Macaulay, we examine the (simply connected) 

compact Lie group E6 of dimension 78, in characteristic two. The cohomology was 

calculated by Kono and Mimura [13], and the answer is 

H*(BEs; IF21 = E2[Y4, Y6, Y7, Ylo, ylbY32, Y34, Y481/R, 

where deg(yi) = i and R is the ideal generated by ~7~10, y7y18, ~7~34 and yi4 

+ YiOY48 + Y&y32 + possibly Y34Y18ylOY6. 3 The Poincare series of this ring is 

1 
pG(t) = (1 _ t4)(1 _ t6)(1 -t32)(1 _ t48) 

1 + t34 t7 
(1 _ tlO)(l _ tl8) + 1 ’ 

A homogeneous set of parameters is given by the elements ~4, y6, ~32, y48, y:’ + yio 

and yis. The first five of these form a regular sequence, while the last is a zero divisor. 

So the depth of H*(BEh; F2) is five. 

Again the E2 page is equal to the E, page in the spectral sequence, and consists 

of zero except in columns five and six. The Poincare series for column five is 

c t-’ dimr, Hj’-‘(H*(B&; F2)) 
i>O 

t-90 

= (1 - t-4)( 1 - t-6)( 1 - t-7)( 1 - t-32)( 1 - t-48)’ 

3 This is an ambiguity in the answer given by Kono and Mimura, which does not affect our Poincark series 

calculations. 
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while the Poincare series for column six is 

1 t-’ dimr, H;-‘(H*(&; IF2)) 
i>O 

t-y 1 + t-34) 

= (1 - t-4)( 1 - t-6)( 1 - t-10)( 1 - t-18)( 1 - t-32)( 1 - t-48)’ 

We conjecture that in general, in the oriented case where the depth and Krull di- 

mension of H*(BG;k) differ by one, the appropriate functional equation is 

pc(llt) - +)2%(t) = -(1 + QP(c(Q, 

where 

p;(t) = C t’ dimk HJ’-“-‘(H*(BG; k)). 
i>O 

The latter would then satisfy the subsidiary functional equation 

J&(t) = td(-t)+l&.(l/t). 

These are the analogues of the functional equations given in Benson and Carlson [4] 

in the finite case. 

4. Highly structured ring and module spectra 

In this section we say the minimum amount possible to make sense of the structure 

of our proof, referring the reader to [6] and [ 1 l] for further details. 

Our proof proceeds by considering the cohomology ring H*(BG; k) as the coeffi- 

cients of an equivariant cohomology theory. In fact, for unbased G-spaces X, we may 

consider Bore1 cohomology 

X H H*(EG xG X; k). 

The coefficient ring is the value (namely H*(BG; k)) this takes when X is a point, 

and the projection X --+ * makes H*(EG XG X; k) into a module over this ring. 

It will be convenient to work from now on with the reduced theory on based G- 

spaces X, for which we use the notation 

b*,(X) := H*(EG xG X,EG XG *; k) 2 G*(EG+ AG x; k). 

In the based formulation the coefficient ring is the value of the theory on So: 

b; E fi*(BG+; k) 2 H*(BG; k). 

For formal reasons, Bore1 cohomology is represented by a G-spectrum b in the sense 

that b:(X) = [X, b];, where the right hand side denotes G-homotopy classes of maps 
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of G-spectra in the sense of [14]. Indeed, if H represents ordinary cohomology with 

coefficients in k, we may build in non-trivial representations to form the G-spectrum 

i*H and calculate using [ 14, II. 4.51 

[X,F(EG+, i*H)]g = [EG, AX, &HI: = [EG+ AG X, HI*, 

so that the G-spectrum b = F(EG+,i*H) represents bz(.). It is not hard to deduce, 

from the fact that H*(EG xGX; k) is a graded commutative ring, that the representing 

spectrum b is a commutative ring object in the homotopy category of G-spectra (a 

‘commutative ring G-spectrum’). 

The idea is that it would be useful if we could construct some form of derived 

category of modules over b. One could then work in this category to provide analogues 

of the constructions of Section 2, and hence exploit the formal properties of the algebra. 

The spectral sequence would then arise by taking the analogue of the homology of a 

filtered chain complex. 

The first problem with this is that for an arbitrary commutative ring spectrum R 

there is no way to put an R-module structure on the mapping cone of an R-map be- 

tween R-modules. The solution is to restrict the class of ring spectra R and endow 

them with extra structure. The problem arises from choices involved in the homotopies 

used to prove commutativity and associativity. The reason for these choices is that we 

have only worked in the homotopy category; the traditional solution is to continue as 

far as possible in the homotopy category and assume that these and all higher ho- 

motopies are unique up to homotopy. One thus reaches the definition of an Em ring 

as a ring spectrum with extra coherence conditions on the commuting and associat- 

ing homotopies. The more satisfying solution is to attribute the problem to premature 

passage to homotopy, and to ask that the spectrum R is actually a ring spectrum in 

a category of spectra before passage to homotopy; however this only makes sense if 

there is a smash product which is commutative, associative and unital before passage 

to homotopy. Such a category of spectra and such a smash product have recently 

(and unexpectedly) been constructed by Eimendorf-Kriz-Mandell-May [6], and they 

show that a spectrum which is an algebra over the sphere spectrum at the point set 

level is essentially the same as an E, ring spectrum in the traditional sense. We shall 

be content to treat the Elmendorf-tiz-Mandell-May category as a black box deliv- 

ering constructions with certain properties we need. We shall refer to an algebra R 

over the sphere G-spectrum as a highly structured ring G-spectrum. Elmendorf and 

May [8] write SC for the O-sphere G-spectrum, and would thus refer to R as an &- 

algebra. When emphasis is necessary we refer to a module over R as a highly structured 

R-module. 

Now suppose R is a highly structured ring G-spectrum and M is a highly structured 

module spectrum over it. Following Section 2, we shall explain how to define a highly 

structured module spectrum which is the analogue of the ‘right derived J-power torsion 

fimctor’ in the derived category: this suggests notations R~JM or H&V), but we shall 

use the simpler notation TJA4 since in our context it is not ambiguous. Beginning with 
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the principal case, for /3 E $R we define T(&R) by the fibre sequence 

T(b)(R) - R + WPI. 

Here R[ l/B] = holim(R -% R L . . .) is a module spectrum and the inclusion of 

R is a module mzp; thus T(p)(R) is a highly structured module. Analogous to the 

filtration at the chain level we have an R-module filtration of T(b)(R) by viewing it as 

Z-‘(R[l//I] U CR), where CR denotes the cone on R. 
Next we define the J-power torsion spectrum [9, 1 l] for the sequence PI,. . . , /& by 

r,, ,,..., p,,,(R) = r,s, j(R) AR . . . AR ~(,s)W 

Using the same proof as in the algebraic case we conclude that r~~,,.,,,~S,)(R) depends 

only on the radical of J = (j?~, . . .,B,,); we therefore write I”(R) for it. It is then 

natural to define the J-power torsion spectrum of A4 by 

~J(M) := T.(R) AR kt. 

To calculate the homotopy groups of TJ(R;M) we use the product of the filtrations of 

T(bi)(R) given above. Since the filtration models the algebra precisely, the homotopy 

spectral sequence of the filtered spectrum TJR gives us a useful means of calculation. 

Lemma 4.1. There is a spectral sequence 

E;’ = H$‘(Rf;M,G) =+ ,f_,(rJ(Ltf)) 

with d@Ferentials d, : E:’ + EFfrstPrf’. 

The one other property we need is good behaviour under restriction. Indeed, if H is a 

subgroup of G we may view the highly structured ring G-spectrum R as a highly struc- 

tured ring H-spectrum by neglect of structure, and the change of groups isomorphism 

[G/H+,R]$ = [S’,R]G = R: allows us to construct the restriction homomorphism 

res$ : Rz ---+ Rg as the map induced by projection G/H - G/G. Given any ideal 

J of Rz we may consider the ideal res$J in RG generated by the image of J, noting 

that this is also generated by the restrictions of any set of generators of J. With this 

notation, the behaviour under restriction is immediate by construction. 

Lemma 4.2. In the above situation there is an equivalence of highly structured module 
H-spectra 

5. Strategy 

In this section we prove the main theorem modulo the fact that the representing 

spectrum b (which is only determined up to homotopy type) may be chosen to be a 
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highly structured ring G-spectrum. This is proved by Elmendorf-May in the companion 

paper [8, 1.51; in fact they prove the stronger result that the G-spectrum i*H is weakly 

G-equivalent to a highly structured ring. 

For any highly structured ring G-spectrum R we may take J to be the augmentation 

ideal J = ker(resf : R$ -+ R* ), and attempt to implement the strategy below; there 

are only three places where further assumptions are necessary, but for definiteness we 

shall take R = b throughout, referring the reader to [l l] for further discussion of the 

general case. By definition the coefficient ring is the ring of interest to us, 

b; = f?*(BG+; k) ” H*(BG; k), 

and the augmentation ideal J is the ideal of positive degree elements. Since bz is 

Noetherian by Venkov’s finite generation theorem [ 16, 171, the ideal J is finitely 

generated, and we may construct the spectrum TJ(b). For the rest of the section we 

work entirely with highly structured modules over b. 

Since resf(J) = (0) and, since for any R the augmentation gives an equivalence 

T(QR = R, it follows from Lemma 4.2 that the natural augmentation TJ(b) - b is 

non-equivariant equivalence, so that EG+ A TJ(b) 21 EG+ A b; the map collapsing EG 

to a point thus gives a map 

whose mapping cone is I?G A T’(b), where EG is the mapping cone of the projection 

EG+ - So. 

The main theorem is proved by showing that K is a G-equivalence. The point is 

that the homotopy groups of the codomain are calculated by the spectral sequence of 

Lemma 4.1, whereas those of the domain are closely related to the homology of BG. 

In fact, since EG+ A b = EG+ A F(EG+, i*H) N EG+ A i*H, it is immediate from the 

Adams isomorphism [14, II. 7.21 that 

$(EG+ A b) = E?,(EG, A\G SAdCG); k), 

where Ad(G) is the adjoint representation, and SAdCG) is its one point compactification 

with the new point as its G-fixed basepoint. 

Theorem 5.1. For any compact Lie group G and commutative Noetherian ring k 

there is a spectral sequence 

E;” = H;‘(H*(BG; k)) + fi_,_t(EG+ AG SAdcG); k) 

of modules over H*(BG; k) with d@erentials d, : E;’ - EFfr,t--rf’. 

We say that the adjoint representation is orientable over k if it can be replaced 

by the G-fixed representation of the same dimension so that we have an isomorphism 

fi*(EG+ AG SAdCG); k) % f?*(CdBG+; k) of modules over H*(BG; k). A Serre spectral 

sequence argument shows this is the case if G acts trivially on Hd(SAdcG); k), which 
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is certain if G is finite, the component group is of odd order or k is of characteristic 

two. However, the adjoint representation may not be orientable; for example that of 

O(2) is not orientable over k unless char(k) = 2. 

Corollary 5.2. For any compact Lie group G of dimension d and commutative No- 

etherian ring k over which the adjoint representation is orientable, there is a spectral 

sequence 

E;” = HTt(H*(BG; k)) + H_,_t_d(BG; k) 

of modules over H*(BG; k) with d#erentials d, : E>’ - E~+r~t--r+‘. 

It remains to prove that K is a G-equivalence, or equivalently that its mapping cone 

is G-contractible. Since all descending chains of subgroups in a compact Lie group 

are finite, we may suppose by induction that the analogous statement has been proved 

for all proper subgroups H of G. To make use of this assumption we need to know 

augmentation ideals are compatible in a sense we now make precise. 

Lemma 5.3. For any subgroup H of G the augmentation ideals J(G) of H*(BG; k) 

and J(H) of H*(BH; k) are related by 

P------ resn(J(G)) = J(H). 

Proof. The proof of Venkov’s finite generation theorem [ 16, 171 shows that the restric- 

tion map H*(BG; k) - H*(BH; k) is finite, and the assertion follows. Indeed if p is a 

prime of H*(BH; k) containing res$J(G) then (res$)-‘(p) > J(G) = (resg)-‘(J(H)); 

by the Going Up Theorem p > J(H). 0 

It follows from Lemma 4.2 that we have equivalences of H-spectra 

reszfi(o# p T,,;.& y rJ(H)b, 

so that we may safely write J without qualification. In particular, by untwisting [14, 

11.4.81 and the inductive hypothesis we have 

GIH,A~GAT,b~G~~(~HATJb)~* 

for any proper subgroup H of G, and hence 

whenever T is built out of cells G/H+ A S” with H a proper subgroup. 

The extreme example of such a space T is the space E9+. Here E9 is the universal 

space for the family 9 of proper subgroups characterized by the property that EP is 

H-contractible for any proper subgroup H, but (E9’)G = 0. The cofibre sequence 
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and the inductive hypothesis show that it is enough to prove that l?P A T’_b is G- 

contractible. Since _I?.9 is H-contractible for any proper subgroup H, it follows from 

the Whitehead theorem that it is enough to show $(I?9 A TJb) = 0. 
At this point we must recall that for any complex representation V 

class t(V) E glY’(EG+ AG SV;k), giving rise to Thorn isomorphisms 

E?“+‘(EG+ AoX;k) 5 H”(EG+ AG C”X; k) 

there is a Thorn 

by external multiplication. In particular, taking X = So, the pullback of the unit is the 

Euler class x(V) E bK’ = f?“‘(BG+;k); equivalently the inclusion e(V) : So + S” 

gives a diagram 

b”c(S” AX) ‘ti b”c(S’ AX) 

z T Thorn 

/I 

@“i(x) z 
%(X). 

The represented manifestation of the Thorn isomorphism is a G-equivalence S” A b 2: 

Sl”l A b. 
Using this, there is a useful reduction. 

Lemma 5.4 (Carlsson’s reduction). It is sufJicient to show TC$?(S~” A I’.‘.(b)) = 0 for 
a single chosen complex representation V provided VG = 0. 

Proof. Since VG = 0, we have an equivalence 5’“” A I?.9 N k??,, so that it is enough 

to show n!$F=‘” Al?9 A T’_(b)) = 0. However l?9’ can be constructed as a direct limit 

of spheres Ss’ where W runs over complex representations without trivial summand. 

Since SW A I’_‘_(b) cv SIWi A T.(b) from the Thorn isomorphism, the hypothesis ensures 

that rc$(S”” A SW A T_(b)) = 0, and hence the direct limit of these groups is also 

zero. 0 

It is now easy to complete the proof of Theorem 5.1; indeed we may calculate 

7&S”” A TJ(b)) = l$&Skv A I’.‘.b) 

= lim { z$I’.‘.b, x(V)} 

= &&WO’)I. 

But x(V) E J since e(V) is non-equivariantly 

H,*(b:) MV’)l = 0; 

from the spectral sequence of Lemma 4.1 we 

7&S”” A TJ(b)) = 0. 0 

null-homotopic and so 

see that 
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